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Abstract: The measure of availability that is often used to compare the dependability of 
computer-based systems is imperfect, insofar as two systems with the same availability can 
display quite different performance characteristics. Here we develop a new fractal temporal 
measure for work effort that offers insights into a system’s performance not captured by the 
traditional availability measure. Moreover, we show that this fractal measure can be used to 
compare the temporal work patterns of both human and artificial agents and identify their 
unique strengths and weaknesses. Such new comparative tools will become increasingly 
important as the development of more sophisticated artificial agent technologies creates 
situations in which particular functions within an organization can be carried out either by 
human or artificial personnel.
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1. Introduction 

As the sophistication of artificial agent technology grows, businesses are employing 
artificial agents in an increasing number of roles. In the form of web- or telephone-
based conversational agents, artificial agents are on the front lines of complex 
interactions with customers that directly shape an organization’s public image and 
customer-service performance. Advances in social robotics are also creating 
opportunities to deploy artificial agents in situations where they interact with human 
customers, coworkers, and partners – as well as other complex computerized systems 
– on an ongoing basis. In order to carry out these tasks, artificial agents are now 
being created that are capable of mastering sophisticated interpersonal workplace 

1  Selected parts of this article were published under nonexclusive copyright in Position papers of 
the Federated Conference on Computer Science and Information Systems FedCSIS 2014 (see [Gladden 
2014]).
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behavior such as using social intelligence to successfully manage the abilities, 
limitations, and expectations of human employees [Williams 2012], identifying and 
displaying culture-specific behaviors in interactions with human colleagues [Rehm 
et al. 2009], and evaluating the performance of the human members of virtual teams 
[Nunes, O’Neill 2012].

The fact that artificial agents are becoming capable of filling a growing number 
of organizational roles that have traditionally been filled by human workers means 
that practitioners of disciplines such as organizational design, solution architecture, 
and performance engineering will need ways of assessing and comparing how human 
workers and artificial agents would perform differently (or similarly) if assigned to 
the same role within an organization. New and more robust metrics for quantifying 
managerial performance are especially desirable, as it is typically more difficult to 
precisely quantify the performance of a manager than it is to quantify the performance 
of, say, a human worker or robot filling an assembly-line role, where job performance 
can be quantified relatively easily in terms of units assembled per hour or 
nonconformities per million opportunities (NPMO).

In developing new measures to compare the performance of human beings and 
artificial agents executing management functions, we find that one of the most crucial 
aspects of their work performance is the extent to which they effectively and 
efficiently use time. We have previously proposed a new temporal measure based on 
the Hurst exponent and fractal dimension that is useful for calculating and comparing 
the work effort dedicated to a given task within a particular time by either human 
personnel or artificial agent systems that are carrying out the four key management 
functions of planning, organizing, leading, or controlling [Gladden 2014]. In this 
paper, we further develop that proposed fractal measure as a means for identifying 
specific kinds of performance strengths and weaknesses that particular human or 
artificial agents are likely to demonstrate in such roles.

2. Formulating a fractal measure to assess agents’ temporal  
    work patterns

2.1. Identifying relevant time-scales for human and artificial agents

When assessing the work effort of artificial understood agents as computer-based 
systems, the relevant time intervals to be taken into consideration range from the 
macrotemporal level of several years (i.e., the lifespan of a typical commercial 
artificial agent system as utilized within a business) down to the microtemporal level 
of around 17 milliseconds (i.e., the time needed to generate a single screen refresh) 
or less [Gladden 2014]. As Gunther notes, there is no need to consider much smaller 
time intervals such as a single CPU cycle [Gunther 2005] that do not have an 
immediate relation to the larger-scale processes that we describe as an agent’s 
meaningful “work.”
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When assessing the work effort of human managers, the relevant time-scales are 
similar; the time intervals to be taken into consideration range from the macrotemporal 
level of several years (i.e., the length of time that a human employee typically spends 
working for a particular organization) down to the microtemporal level of around  
50 milliseconds (i.e., the length of time needed to hear or speak a single phoneme or 
to consciously perceive a single coherent experience or event [Gladden 2014].

Within this range, there are time-scales and activity cycles of different lengths that 
demonstrate significant self-similarity: within a given year of work, a typical human 
manager will spend many consecutive weeks working, interrupted periodically by 
non-work weeks of vacation; within a given week of work, he will spend spans of 
several consecutive hours working, followed by non-work hours when he is asleep or 
out of the office; and within a given hour of work, his spans of minutes spent working 
will be followed by non-work intervals when he is checking personal emails or taking 
a coffee break. The roughly self-similar nature of this temporal dynamic opens the 
door to understanding a human manager’s work activity as a fractal time series.

2.2. Fractal dimension as an indicator of persistence and antipersistence

One of the most important attributes of a fractal time series is that it possesses a 
fractal dimension that captures valuable information about the series’ temporal 
dynamics. The fractal dimension of empirically observed natural phenomena can be 
described by the equation D = 2 – H, where H is the Hurst exponent of the time series 
as graphed in two-dimensional Cartesian space [Mandelbrot 1983]. The case 0 < H 
< ½ reflects a dynamic that is variously described as “antipersistent,” irregular, or 
trend-reversing: if the value in one moment is greater than the mean, the value in the 
next consecutive moment is likely to be less than the mean. The case H = ½ represents 
a random-walk process such as Brownian motion, in which the value in the next 
consecutive moment is equally likely to move toward or away from the mean. The 
case ½ < H < 1 is described as “persistent” or quasi-regular: the value at the next 
consecutive moment in time is likely to be the same as the value in the previous 
moment [Mandelbrot 1983, pp. 353, 354; Valverde et al. 2005, pp. 817–822]. In such 
a case, we say that the dynamic has long memory.

2.3. Work effort as a time series of binary values

Graphing an agent’s work effort in two-dimensional space would be useful if the 
work effort displayed by a human or artificial agent manager at a particular instant of 
time were able to range across a continuous spectrum of values. However, in this 
case we have only a binary set of possible values: at any given instant, an agent is 
either focusing its attention on its work, or it is not [Marchetti 2000; Gladden 2014]. 
B.B. Mandelbrot notes [Mandelbrot 1983, p. 354] that if the fractal dimension of  
a time series graphed in two-dimensional space is represented by the equation  
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D = 2 – H, then the zero set (or any other level set) of the graphed time series would 
have fractal dimension:

D = 1 – H.

We can use this equation to relate the fractal dimension and Hurst exponent for 
work effort as graphed on a one-dimensional line segment. The length of the entire 
segment represents the entire time available (such as a year, week, or hour) during 
which an agent can potentially be performing work. Those instants of actual work 
form the set graphed on the line segment, while instants of non-work do not belong 
to the set.

In these circumstances, the Hurst exponent takes on a different meaning. For a 
two-dimensional graph of a time series with H ≈ 0, successive y-values alternate 
antipersistently around the mean, and the graphed line fills up a relatively large share 
of the two-dimensional space. For a one-dimensional graph of a binary time series, 
one might visualize the set as though it contains a single point that is able to slide 
back and forth along the x-axis to occupy many different x-values simultaneously, 
thus forming the set. For a set with high persistence (H ≈ 1), the point may be locked 
to a single x-value, reflecting a process with long memory. For a set with low 
persistence (H ≈ 0), the point “forgets” where it is and is free to move up and down 
the line segment, occupying many different x-values [Gladden 2014].

2.4. Applicability of the box-counting method to work patterns

We can employ the Minkowski-Bouligand or box-counting method to estimate the 
fractal dimension of managerial workers’ temporal dynamics. (While this method 
lacks some of the mathematical import found in other definitions of fractal dimension 
such as the Hausdorff dimension, the box-counting dimension has an advantage in 
that it can easily be applied to empirically observed phenomena [Longo, Montévil 
2014].) The box-counting dimension D of set F can be calculated as:

.

Here Nδ(F) is the smallest number of sets of diameter δ that cover the set F 
[Falconer 2004, pp. 41–44]. When using the box-counting method to estimate the 
fractal dimension of natural phenomena, this can be done by calculating the average 
value of D that results when one empirically determines Nδ(F) for multiple values of 
δ [Wahl et al. 1994, pp. 75–108].

2.5. Calculating our fractal measure for agents’ temporal work patterns

To apply the box-counting method to the temporal dynamics of a human or artificial 
agent’s work, we consider an agent’s typical work effort as viewed across on three 
different time-scales or levels: 1) The set F1 includes those weeks worked within a 
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span S1 of five years (or 260 weeks), for which the covering sets used for the box-
counting estimation were δa = 4 weeks, δb = 2 weeks, and δc = 1 week. 2) The set F2 
includes those hours worked within a span S2 of one week (or 168 hours), for which 
the covering sets used for the box-counting estimation were δa = 4 hours, δb = 2 
hours, and δc = 1 hour. 3) The set F3 includes those minutes worked within a span S3 
of one hour, for which the covering sets used for the box-counting estimation are  
δa = 1 minute, δb = 30 seconds, and δc = 15 seconds. Using the box-counting method, 
we calculate D1, D2, and D3 for the time-scales F1, F2, and F3, respectively, and 
average those values to produce a mean value of D = <D1, D2, D3> for a particular 
agent. We then calculate the estimated value for the Hurst exponent for that agent’s 
temporal dynamic with the equation H = 1 – D.

2.6. Contrasting our fractal measure with availability and reliability

We can compare our fractal measure with two common measures of work effort for 
computer-based systems: namely those of availability and reliability. The reliability 
of a computer is frequently quantified in the form of its “mean time to failure” 
(MTTF), the average length of time a system will remain continuously in operation 
before experiencing its next failure [Grottke et al. 2008]. The mean time to repair 
(MTTR) is the average length of time needed to detect and repair the failure and 
return the system to operation. By combining these two measures, we can calculate 
a computer’s steady-state availability A, which is the likelihood that the computer is 
operating at a particular moment and is given by the equation [Grottke et al. 2008]:

.

Availability’s simplicity as a performance measure is both a strength and  
a limitation. Two servers with the same value for availability might possess radically 
different performance characteristics that are not captured by the availability figure 
[Gunther 2005]; for example, 1) a server that runs without a single instant’s 
interruption for nine months and then needs to be taken offline for a month for 
maintenance, upgrades, and testing, and 2) a server that freezes for one out of every 
ten seconds but never requires any downtime for maintenance or upgrades each has 
an availability of 90%, but the performance characteristics (and potential practical 
uses) of the two servers are quite different.

Another limitation to the measure of availability is that it has traditionally been 
understood in a purely binary manner: a system is either ‘up’ or ‘down’. Rossebeø et 
al. suggest the need to develop a more sophisticated measure that takes qualitative 
aspects into account and allows for a range of intermediate qualitative states between 
simply ‘up’ and ‘down’ [Rossebeø et al. 2006]. While we strongly support such 
efforts, the new measure that we propose takes a different tack: its unique diagnostic 
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value comes not from adding a more robust qualitative component but from instead 
introducing a more sophisticated approach to the fineness and resolution of the time-
scales on which the binary up/down measurements are being made.

3. Applying our fractal temporal measure to human workers

We can now apply our fractal temporal measure to the case of particular human 
managers and compare and contrast the results with those received when the 
traditional measure of availability is applied to the same cases. 

3.1. Temporal dynamics of Human Manager A

Consider a hypothetical Human Manager A whose work effort nears the maximum 
of what is possible for contemporary human beings. This manager takes no weeks of 
vacation during the five years worked in his position (S1 = 260 weeks, Nδ(F1) = 260 
weeks). He focuses entirely on his career, working an average of 90 hours per week 
(S2 = 168 hours, Nδ(F2) = 90 hours). During the work day, he avoids all possible 
distractions and spends only 5 minutes of each ‘work hour’ not performing work-
related functions (S3 = 60 minutes, Nδ(F3) = 55 minutes). In Figure 1 we have graphed 
each of these situations on a line segment. Within the graph of the time series, a 
moment of work is indicated with a colored vertical slice, and a moment of non-work 
is indicated with an unshaded interval. For an agent with these characteristics, we 
have calculated D = 0.962, H = 0.038, and availability (understood as the likelihood 
that any randomly-selected instant of time will fall during a moment of work rather 
than non-work) as A = 49.1%.

Figure 1. Human Manager A’s periods of work and non-work

Source: author’s own design.
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3.2. Temporal dynamics of Human Manager B

Hypothetical Human Manager B represents the opposite end of the spectrum: his 
time commitment approaches the lowest amount possible for someone who is 
fulfilling a management role with an organization. We suppose that Human Manager 
B spends only half of the weeks in the year working (S1 = 260 weeks, Nδ(F1) = 130 
weeks), and even during those weeks when he is working, the manager dedicates 
only 10 hours of effort to this particular position (S2 = 168 hours, Nδ(F2) = 10 hours). 
Moreover, during each hour of ‘work,’ the manager spends only a third of the time 
focused directly on work-related tasks, with the rest of the time representing 
distractions or non-work-related activities (S3 = 60 minutes, Nδ(F3) = 20 minutes). A 
graph of the temporal work dynamics of Human Manager B is seen in Fig. 2 below. 
For an agent with these characteristics, we have calculated D = 0.532, H = 0.468, and 
A = 1.0%.

Figure 2. Human Manager B’s periods of work and non-work

Source: author’s own design.

3.3. Temporal dynamics of Human Manager C

Hypothetical Human Manager C takes off 16 weeks of vacation from work each 
year, scattered over the course of the year (S1 = 260 weeks, Nδ(F1) = 180 weeks), 
however during weeks when he is working, he works an intense schedule of 50 hours 
per week (S2 = 168 hours, Nδ(F2) = 50 hours). Such a schedule might reflect, for 
example, the routine of a part-time consultant who has frequent breaks between 
labor-intensive projects. During each hour of work, this manager spends 8 minutes 
on non-work-related activities – e.g., checking personal emails or taking an exercise 
break before launching into another focused session of work (S3 = 60 minutes, Nδ(F3) 
= 52 minutes). A graph of the temporal work dynamics of Human Manager C is seen 
in Fig. 3 below. For an agent with these characteristics, we have calculated  
D = 0.692, H = 0.308, and A = 17.9%.
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Figure 3. Human Manager C’s periods of work and non-work

Source: author’s own design.

3.4. Temporal dynamics of Human Manager D

Hypothetical Human Manager D works every week of the year (S1 = 260 weeks, 
Nδ(F1) = 260 weeks), however during each of those weeks he works a comparatively 
relaxed schedule of 36 hours per week (S2 = 168 hours, Nδ(F2) = 36 hours). Such a 
schedule might reflect, for example, the routine of a manager in a relatively quiet 
small business who is, however, never able to take a week of vacation because there 
are no other trained staff available to fill in for him during his absence. During each 
hour of work, the manager spends 10 minutes on non-work-related activities – e.g., 
checking personal emails and social media (S3 = 60 minutes, Nδ(F3) = 50 minutes).  
A graph of the temporal work dynamics of Human Manager D is seen in Figure 4 
below. For an agent with these characteristics, we have calculated D = 0.908,  
H = 0.092, and A = 17.9%.

Figure 4. Human Manager D’s periods of work and non-work

Source: author’s own design.
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3.5. Analysis of the cases of four hypothetical human managers

Through use of our fractal measure, we gain new insights into the unique strengths 
and weaknesses of managers’ temporal work patterns. Table 1 below gives the values 
of fractal dimension (D), Hurst exponent (H), and availability (A) for all four 
hypothetical human managers described above, ranked from highest to lowest values 
of D.

Table 1. Human managers’ work effort as characterized by fractal  
dimension (D), Hurst exponent (H), and availability (A).

Agent D H A

Human Manager A 0.962 0.038 49.1%
Human Manager D 0.908 0.092 17.9%
Human Manager C 0.692 0.308 17.9%
Human Manager B 0.532 0.468     1.0%

Source: author’s own calculations.

An examination of our calculations’ results allows us to make the following 
observations:

1. Human Managers A and D display similar values of H ≈ 0 (antipersistence), 
while Human Managers B and C display a value of H ≈ ½ (randomness). While more 
study is required to verify this supposition, it seems probable that managers with low 
persistence (as understood in the mathematical sense defined above) would as a 
practical matter experience fewer switch costs, as their work intervals last longer, 
and they spend a smaller share of their work time transitioning into or out of periods 
of work.

2. While the managers possessing values of of H ≈ 0 and D ≈ 1 (i.e., Human 
Managers A and D) display “antipersistence” in the mathematical sense, in everyday 
terms this (perhaps counterintuitively) corresponds to a relatively continuous work 
routine composed of long intervals of uninterrupted work. From the perspective of 
solution architecture in the workplace, such managers possess a certain sort of 
“dependability,” insofar as they are capable of working during almost all possible 
moments. However, they may simultaneously display a sort of “inflexibility,” insofar 
as they are used to working in every possible moment, and thus unexpected 
interruptions may be more likely to derail the work of this sort of manager. On the 
other hand, managers with a value of D ≈ 0 possess “flexibility,”’ insofar as they are 
already used to working only sporadically and juggling intervals of work amidst 
many other activities, and thus unexpected interruptions to their work may not 
greatly faze them. At the same time, they may simultaneously display a sort of 
“undependability,” insofar as their work intervals are generally short-lived and 
sporadic: the bulk of their time may already be filled with non-work-related activity, 
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leaving only brief, erratic slivers of time available for work. If an unexpected 
distraction prevents them from working during one of these windows, it may be 
some time before another window of availability for work appears. (Note that when 
making such assessments of an existing organization – rather than designing new 
organizational structures and processes – performance engineers must carefully 
distinguish whether the strengths and weaknesses identified result from a particular 
manager’s preferred “natural” work pattern or derive intrinsically from the structure 
and role of the manager’s position as currently designed.)

3. The scenarios and corresponding calculations described above demonstrate 
that the traditional measure of availability and our new fractal measure are not 
redundant or duplicative; each of the measures conveys unique information that 
cannot be derived from the other. For example, we can see that Human Managers C 
and D have identical values for A (17.9%) but different values for D (0.692 and 
0.908, respectively). If a performance engineer were relying solely on the availability 
statistic, he could erroneously presume that Human Managers C and D have identical 
temporal work patterns, however our fractal measure reveals that this is not the case: 
Human Manager D displays a pattern of antipersistence (with its corresponding 
strengths and weaknesses, from a practical perspective) while Human Manager C 
reflects a pattern closer to randomness. This highlights the fact that if one only 
utilizes a simple measure such as availability in assessing (and ranking) the temporal 
work dynamics of human and artificial agents, one will miss out on additional 
information that our fractal measure can provide. While availability is an extremely 
useful measure, it is limited (and could potentially even be misleading) if not 
complemented by more sophisticated measures such as fractal dimension.

4. Using our fractal measure to design more effective artificial  
    agent solutions for the workplace

4.1. The relationship of agent architectures to temporal work patterns

While current examples of artificial agent systems can generally be thought of as 
relatively conventional software applications (with the corresponding design 
elements and limitations), this will not always be the case. The kinds of autonomous 
artificial agents intended to interact with human beings will increasingly be expected 
to possess a more robust, human-like array of cognitive capacities. Artificial agents 
that utilize a neural net architecture will in particular display characteristics much 
different from those designed to run as a software application on a traditional serial-
processor-based computer. Ongoing research indicates that as such artificial agents 
are designed with more advanced human-like cognitive capacities, they also begin to 
reflect a number of human-like cognitive needs and “limitations,” such as a regular 
need to temporarily shut off the stream of incoming sensory data in order to execute 
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a phase in which recently received data is fully processed and assimilated into long-
term memory (i.e., an analogue to the daily human sleep cycle) and a need to “slow 
down” and reflect after some unfortunate event has occurred, in order to extract its 
meaning and identify ways of avoiding such disadvantageous events in the future 
(i.e., an analogue to human emotions such as sadness) [Friedenberg 2011, pp. 179– 
–200].

Autonomous artificial agents possessing such cognitive and operational 
characteristics will find it increasingly difficult to maintain the high-availability 
work patterns (e.g., A ≈ 99.99%) demanded of most contemporary enterprise systems. 
Instead, their temporal work patterns will likely become more closely aligned with 
the range of patterns seen in human workers. In two examples below, we show how 
the use of our fractal temporal measure can – in conjunction with the measure of 
availability – highlight useful design considerations for organizational designers or 
solution architects who are incorporating advanced autonomous artificial agents into 
an organization’s business processes in roles in which they will interact over extended 
periods of time with human collaborators.

4.2. Temporal dynamics of Artificial Agent Manager A

We can first consider a hypothetical Artificial Agent Manager A in the form of a 
software program running on a computer with a typical serial processor architecture. 
(This represents the more conventional, relatively unsophisticated form of artificial 
agent.) We suppose that during a given five-year operating period, there may be brief 
service outages for scheduled maintenance or updates but that there are no extended 
outages (S1 = 260 weeks, Nδ(F1) = 260 weeks). Each week, there is a scheduled 
maintenance window of one hour, when software updates are applied and the system 
is rebooted (S2 = 168 hours, Nδ(F2) = 167 hours). We suppose that the software 

Figure 5. Artificial Agent Manager A’s periods of work and non-work

Source: author’s own design.
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program and hardware substrate for Artificial Agent Manager A have no non-work-
related functions and are not capable of being ‘distracted’ in the way that a human 
manager is; thus during a typical hour period of work, Artificial Agent Manager A 
does not dedicate any minutes to non-work-related functions (S3 = 60 minutes, Nδ(F3) 
= 60 minutes). A graph of the temporal work dynamics of Artificial Agent Manager 
A is seen in Figure 5. For an agent with these characteristics, we have calculated  
D = 0.999, H = 0.001, and A = 99.4%.

4.3. Temporal dynamics of Artificial Agent Manager B

Next we can consider the hypothesized future scenario of Artificial Agent Manager 
B, a more advanced form of artificial general intelligence with a distributed neural 
network architecture that is modeled on the human brain and – in comparison to 
contemporary artificial agents – displays more human-like motivations, emotions, 
and learning capacity [Friedenberg 2011, pp. 179–200]. While Artificial Agent 
Manager B enjoys its job, every two years it must spend a week away from work for 
a period of psychological assessment, maintenance, and relaxation, to reduce the 
likelihood of professional burnout (S1 = 260 weeks, Nδ(F1) = 258 weeks). Moreover, 
during each week of work, its neural network architecture requires it to spend two 
hours daily in a “sleep” mode in which any new external stimuli are shut out, in order 
to facilitate the assimilation of the day’s experiences into long-term memory. In 
order to maintain its capacity for creativity, satisfy its intellectual curiosity, and avoid 
the development of cyberpsychoses, it must also spend two hours daily exploring 
spheres of experience unconnected to its work-related tasks (S2 = 168 hours, Nδ(F2) 
= 126 hours). Because Artificial Agent Manager B reflects the full constellation of 
human-like cognitive and social behaviors, it spends five minutes of each hour on 
functions other than work, such as cyberloafing, following news stories, and 
communicating with friends (S3 = 60 minutes, Nδ(F3) = 55 minutes). A graph of  

Figure 6. Artificial Agent Manager B’s periods of work and non-work

Source: author’s own design.
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the temporal work dynamics of Artificial Agent Manager B is seen in Figure 6. For 
an agent with these characteristics, we have calculated D = 0.945, H = 0.055, and 
A = 68.2%.

4.4. Analyzing the cases of hypothetical artificial agent managers

When we compare the temporal measures for our two artificial agent managers with 
those from our four human managers, we obtain the results (ranked from the highest 
value of D to the lowest) shown in Table 2.

Table 2. Human and artificial agent managers’ work effort as characterized  
by fractal dimension (D), Hurst exponent (H), and availability (A)

Agent D H A

Artificial Agent Manager A 0.999 0.001 99.4%
Human Manager A 0.962 0.038 49.1%
Artificial Agent Manager B 0.945 0.055 68.2%
Human Manager D 0.908 0.092 17.9%
Human Manager C 0.692 0.308 17.9%
Human Manager B 0.532 0.468   1.0%

Source: author’s own calculations.

An examination of these results allows us to make the following observations:
1. The values for the two artificial agent managers described above further 

substantiate our assertion that the traditional measure of availability and our newly 
developed fractal measure yield non-duplicative, independently meaningful 
information about managers’ temporal work patterns. For example, we note in the 
cases above that while a higher value for A is typically correlated with a higher 
value for D (i.e., higher availability is regularly correlated with greater 
antipersistence), there is no theoretical necessity that this always be the case. E.g., 
Human Manager A has a lower value of A than Artificial Agent Manager B but a 
higher value of D.

2. The hypothetical cases considered above suggest value in using a fractal 
temporal measure to compare the temporal patterns of specific human managers with 
those of specific artificial agents. If one relies solely on the measure of availability 
for such comparisons, one might find that – as a class – all artificial agent managers 
rank high in availability and all human managers rank significantly lower; the 
measure of availability is not well-suited for making more precise and meaningful 
comparisons between specific members of these two groups. Our fractal temporal 
measure, on the other hand, reveals more nuanced similarities and contrasts between 
particular human and artificial agents. For example, we see that the temporal work 
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patterns displayed by Human Manager A and Artificial Agent Manager A – as 
captured by their fractal temporal measure – are remarkably similar, despite the fact 
that their availability values differ greatly. While their availability values might lead 
an organizational designer, solution architect, or performance engineer to believe 
that Human Manager A and Artificial Agent Manager A have wildly different 
temporal performance characteristics – and are thus likely incapable of performing 
similar management functions with the same degree of effectiveness – the results of 
our fractal temporal measure force one to rethink that presumption and to consider 
more carefully whether Human Manager A and Artificial Agent Manager A actually 
possess similar strengths and weaknesses in their temporal work patterns that might 
allow them to perform the same management function interchangeably, with similar 
degrees of effectiveness.

5. Conclusions

Avenues for further research that we have identified to advance our understanding of 
these issues include gathering empirical data about temporal work dynamics from a 
sample of real-world human managers and artificial agent systems to verify the 
appropriateness and value of this fractal-dimension-based model. Analysis of such 
data could aid in predicting the temporal dynamics of future artificial agent systems 
(for which empirical data is not yet available) and designing more advanced artificial 
intelligence systems that will be capable of carrying out a wider range of business 
management roles. It would also prove worthwhile to identify correlations between 
the values of D and H for a particular manager’s temporal dynamics with traits 
identified in established models of managerial motivation and behavior.

As described in this paper, the work that we have completed thus far has already 
demonstrated the fact that our fractal measure reveals unique information about the 
potential strengths and weaknesses of managers’ temporal work patterns that cannot 
be obtained by looking at a traditional measure like that of availability, as well as the 
fact that our fractal measure can be applied to both artificial agent managers as well 
as human managers, allowing direct comparisons between the performance 
characteristics of the two. We hope that in some small way this fractal temporal 
measure can offer a new tool to practitioners of organizational design, solution 
architecture, and performance engineering, as they seek to create, maintain, and 
improve workplaces in which human personnel and sophisticated artificial agents 
share in carrying out effectively the most critical management functions of their 
enterprise.
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NARZĘDZIE DO PROJEKTOWANIA  
ORAZ OCENY MODELI PRACY CZŁOWIEKA  
I INTELIGENTNYCH AGENTÓW

Streszczenie: Miary dostępności używa się często do porównywania niezawodności syste-
mów komputerowych. Jednakże jest to niedoskonała miara, w jakiej dwa systemy o takiej 
samej dostępności mogą wyświetlać diametralnie różne charakterystyki wydajności. Tutaj 
rozwijamy nową fraktalną, temporalną miarę dla nakładu pracy, która – używana obok do-
stępności – oferuje bogatszy wgląd do wydajności systemów komputerowych. Pokazujemy, 
że ta miara fraktalna może być stosowana do czasowego cyklu pracy zarówno ludzi, jak i in-
teligentnych agentów, umożliwiając bezpośrednie porównanie pomiędzy nimi. Analizując 
sześć hipotetycznych przypadków, pokazano, że ta nowa miara ujawnia unikatowe mocne 
i słabe strony w organizacji pracy człowieka i inteligentnych agentów, które nie są ujęte przez 
tradycyjne miary dostępności. Zidentyfikowano sytuacje, w których takie nowe narzędzie 
oceny porównawczej będzie coraz bardziej istotne dla projektantów i architektów rozwiązań 
organizacyjnych, a rozwój bardziej wyrafinowanych środków sztucznych stwarza sytuacje, 
w których poszczególne funkcje w organizacji mogą być przeprowadzane przez pracowników 
lub inteligentnych agentów.

Słowa kluczowe: analiza wydajności, wymiar fraktalny, zarządzanie obliczeniami i systema-
mi informacji, godziny pracy, sztuczna inteligencja (łącznie z robotyką).




